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Abstract 

Activity recognition systems have demonstrated 

potential in a broad range of applications. A crucial 

aspect of creating large scale human activity sensing 

corpus is to develop algorithms that perform activity 

recognition in a way that users are not limited to wear 

sensors on predefined locations on the body. Therefore, 

effective on-body sensor localization algorithms are 

needed to detect the location of wearable sensors 

automatically and in real-time. However, power 

optimization is a major concern in the design of these 

systems. Frequent need to charge multiple sensor 

nodes imposes much burden on the end-users. In this 

paper, we propose a novel signal processing approach 

that leverages feature selection algorithms to minimize 

power consumption of node localization. With the real 

data collected using wearable motion sensors, we 

demonstrate that the proposed approach achieves an 

energy saving that ranges from 88% to 99.59% while 

obtaining an accuracy performance between 73.15% 

and 99.85%. 

Author Keywords 

On-body Sensor Localization; Low Power Design; Body 

Sensor Networks (BSNs); Machine Learning; 

Classification   

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be honored. 

Abstracting with credit is permitted. To copy otherwise, or republish, to 

post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from  Permissions@acm.org

.  UbiComp'14, September 13 - 17, 2014, Seattle, WA, USA 

Copyright 2014 ACM 978-1-4503-3047-3/14/09…$15.00. 

 http://dx.doi.org/10.1145/2638728.2641313

Ramyar Saeedi 

School of Electrical Engineering and Computer Science  

Washington State University 

Pullman, WA 99163 USA 

rsaeedi@eecs.wsu.edu 

 

Brian Schimert 

School of Electrical Engineering and Computer Science  

Washington State University 

Pullman, WA 99163 USA 

brian.schimert@wsu.edu 

 

Hassan Ghasemzadeh 

School of Electrical Engineering and Computer Science  

Washington State University 

Pullman, WA 99163 USA 

hassan@eecs.wsu.edu 

 

833

UBICOMP '14 ADJUNCT, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2638728.2641313


 

ACM Classification Keywords  

C.3 [Computer Systems Organization]: Special Purpose 

and Application-Based Systems—Real-time and 

embedded systems; J.3 [Computer Applications]: Life 

and Medical Science—Health; H.1.2 [Information 

Systems]: Models and Principles—User/Machine 

Systems Human information processing; Human 

factors. 

 

Introduction 

Current approaches for activity recognition constrain 

the user to a set of  predefined sensor locations; this 

imposes much inconvenience for users as they are not 

allowed to use sensors on their own desired body 

locations [1-3]. For example, while some users may 

prefer to have a smartphone in their pocket, others 

may prefer to carry the smartphone in a backpack or 

purse. Failure to adhere to the predefined protocols 

(i.e., using sensors on pre-specified body locations) 

results in a drastic reduction of the accuracy of physical 

activity monitoring applications. Therefore, new 

algorithms and signal processing techniques are needed 

to detect the location of the wearable sensors 

automatically and in real-time, as they are being used 

in activity recognition systems.  

On the other hand, power optimization is an inevitable 

criterion in wearable systems design. Frequent need to 

charge multiple nodes will decrease the desire of 

continuously using the system. To address this issue, 

power optimization should be considered in different 

levels of design. Many previous studies show that 

system level optimization techniques offer significant 

performance improvements [3]. 

An important aspect of the low-power system level 

design and optimization in wearable sensors is to 

develop efficient signal processing and data reduction 

algorithms that reduce computation load of the 

processing units, allowing low-cost processors to be 

embedded with the wearable device. Theoretically, this 

concept can be generalized to optimize signal 

processing algorithms for different types of costs such 

as costs associated with energy consumption, data 

collection, and user preferences. Our goal in this paper 

is to propose signal processing algorithms for on-body 

localization, while introducing a compromise between 

accuracy and power consumption of node localization. 

In particular, we aim to minimize sensing and 

computation power, while retaining a given localization 

accuracy. 

The remainder of this paper is organized as follows. We 

first discuss the related work on localization and power 

optimization in activity recognition systems. Next, 

motivation for automatic node localization is presented. 

We then present our approach towards low power on-

body localization. Finally our result section discusses 

experimental setup and simulation results followed by a 

discussion of conclusions and future work.  

Related Work 

Activity recognition has been addressed using different 

types of sensors, but accelerometers and gyroscopes 

are the most common sensors; in particular when 

detecting complex movements is the goal of activity 

recognition [2,5,6]. Therefore, a signal processing 

algorithm which uses these sensors is a desirable 

choice for on-body localization.  
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Despite the tremendous amount of research on activity 

recognition, there has been less effort in detecting the 

location of wearable nodes. Major deficiencies of 

current on-body sensor localization algorithms include 

either lack of sufficient accuracy or need for a priori 

knowledge about the activity being performed by the 

user. 

Authors in [7] presented an algorithm for detecting on-

body position of wearable sensors. This paper used a 

C4.5 classifier to perform localization for four different 

locations (wrist, breast pocket, trousers pocket, and 

right eye). The main problem with this approach is that 

the user must repeat a walking pattern for node 

localization. In [8], authors presented another method 

to perform localization based on daily activity routines. 

While this method is not limited to a predefined 

activity, a small set of sensors are used in this study. 

Also, users need to perform daily activities for a long 

period of time for localization. 

A recent study in [9] used an unsupervised technique 

to discover walking activities. Once walking patterns 

are detected, motion signals are analyzed by a SVM 

classifier for node localization. This approach also needs 

the users to perform a predefined activity pattern.  

The approach presented in [10] assumes that the 

activity type is known. In real world applications, 

however, we often face situations that knowledge about 

human movements does not exist beforehand. In fact, 

activity recognition usually is a main goal of utilizing 

mobile wearable motion sensors. The study in [11] 

introduced a method to examine if two portable devices 

are carried by the same person. 

Power optimization is often a main concern in designing 

wearable embedded systems. Although, there are 

different approaches for energy efficient design of 

activity recognition systems, there is no energy efficient 

design for on-body localization. 

Ghasemzadeh et. al. proposed an energy efficient 

sensor coverage for physical movement monitoring. 

The proposed solution is capable of eliminating 

redundant sensor nodes, while maintaining the activity 

recognition accuracy [12]. 

Authors in [13] proposed a genetic programming-based 

feature selection algorithm for activity recognition 

systems. The goal is to find a set of discriminative and 

variation tolerant features that may reduce the energy 

requirements of the wearable sensor system and to 

enhance the robustness of the activity recognition 

solution. 

Zappi et. al. [14] presented a gesture recognition 

system that minimizes power consumption while 

maintaining a run-time application defined performance 

target through dynamic sensor selection. By this 

technique, network lifetime is extended 4 times while 

the accuracy remains approximately the same. 

Motivation  

Accurate activity recognition requires a global view of 

the entire wearable sensor network. The ability of a 

node to recognize an activity varies depending on the 

type of the activity and the location of the sensors. For 

example, consider two locations ‘ankle’ and ‘arm’. The 

node mounted on the arm could distinguish a ‘sit to 

stand’ movement, whereas the ankle sensor might not 
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provide useful information to recognize this movement. 

Therefore, the location of the on-body sensors provides 

useful contextual information useful for activity 

recognition. Furthermore, automatically detecting the 

location of the node is important in realization of real-

world applications of wearable sensors. This is primarily 

due to two reasons: 1) it simplifies the installation of 

body sensor networks and provides a seamless data 

gathering and deployment platform; 2) it improves 

robustness of the system against potential sensor 

displacements, a major problem in obtaining high levels 

of accuracy performance in harsh and uncontrolled 

environments. 

In a recent work [15], we showed that a wearable 

sensor network without automatic sensor localization 

may achieve an activity recognition accuracy as low as 

33.6%. The node localization algorithm, however, can 

increase the accuracy of activity recognition to 98.8%.  

Furthermore, an important goal in designing wearable 

sensors is to optimize power consumption while 

preserving an acceptable accuracy performance.  

On-body sensor localization without prior knowledge 

about the type of activity that is being performed is a 

hard problem mainly due to the large number of 

potential body locations that can accommodate a 

wearable sensor and the large amount of activities that 

can be performed. Prior research either assumes that 

the type of activity is known a priori or uses 

computationally expensive processing algorithms for 

node localization. Furthermore, research in the area of 

on-body sensor localization is very new and has not 

explored what algorithms are most effective in 

detecting sensor locations and what factors affect the 

performance of such algorithms. Motivated by these 

needs, our goal in this paper is to identify signal 

processing algorithms that are promising for on-body 

sensor localization while attempting to optimize the 

amount of power consumption of the system by 

examining power consumption of sensing and 

processing components.  

To the best of our knowledge, finding power-efficient 

features for node localization has not been investigated 

previously.  

Energy-Aware Sensor Localization 

Potentially, there are many different features that can 

be extracted from human activity signals coming from a 

variety of sensors (e.g. accelerometers, and 

gyroscopes). Statistical features have shown 

effectiveness in human activity recognition based on 

previous studies [4]. For node localization purposes, 

however, it is largely unknown which features are most 

effective. Thus, our goal in this paper is to explore 

features that are most effective and power-efficient for 

node localization. For this purpose, we extracted an 

exhaustive set of features that may be useful for on-

body localization.  

In our feature selection procedure, we consider power 

consumption as a criterion while localization accuracy is 

retained at a minimum level of accuracy. Each sensor 

node in our network consists of a 3-axis accelerometer 

and a 2-axis gyroscope. For each sensor axis, as 

mentioned before, a set of exhaustive features is 

extracted. Therefore, the total number of features is 

relatively high for real-time execution on wearable 

sensor nodes with limited processing power and energy 
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sources. Our feature selection algorithm is designed to 

1) reduce the number of features to a discriminative set 

which results in a system robust to sensor 

displacements; 2) significantly decrease sensing and 

computation power dissipation. 

Feature Energy(nJ) Description 

AMP 16386 Signal Amp(Max - Mean) 

Med 405159 Median of signal segment 

Mean 8126 Mean value of signal segment 

Max 8103 Max amplitude of signal segment 

Min 8108 Min amplitude of signal segment 

P2P 16291 Peak to peak amplitude 

VAR 38846 Variance of signal segment 

STD 40431 Standard deviation 

RMS 29705 Root mean square power 

S2E 83 Start to end value 

MORPH 45 Morphological features 

Table 1. Per-feature energy consumption 

To achieve our goal, we try to turn off unnecessary 

sensors in each node to decrease the sensing power, 

and also use the minimum number of features for each 

sensor to decrease the computation power. In the rest 

of this section, a set of terms are defined that are the 

basis for our problem formulation.  

Our approach in using the motion sensor data for on-

body localization is motivated by applications of these 

sensors in activity recognition procedures. In this 

approach, on-body sensor localization is considered as 

a classification problem, where sensor locations 

determine class labels. After collecting data with 

various movement types, we extract an exhaustive set 

of features from the collected acceleration and angular 

velocity signals. We then select the most prominent 

features in terms of power consumption from the large 

set of feature pool, while retaining the localization 

accuracy at a minimum level. In the rest of this section, 

a set of terms is defined. This is the basis for the 

problem formulation. 

Definition 1. Given a finite set of wearable nodes 

N =  {n , n , … , n }  each with a finite set of 

sensors  S = {s , s ,… , s } , the Minimum-Cost Location 

Detection (MCLD) problem is finding a set of features 

such that the total sensing and computation energy of 

the features is minimized subject to achieving a given 

minimum accuracy of the node localization algorithm. 

Definition 2. Given the finite set of sensors             

S =  {s , s , … , s }, a set of weight  = {  ,   , … ,   }  is 

defined based on sensing power consumption. We 

assume that the network is homogeneous in the sense 

that all nodes have the same types of motion sensors. 
From each sensor s , we extract k features  {   ,    … ,    }. 

Also, we define weight     for each feature     based on 

computation power.  

Definition 3. Given the set of features      , ranking of a 

feature is defined as a function of its power 

consumption (computation and sensing) and its 

contribution to node localization, measured by a feature 

selection algorithm. 

Assume that     is a given binary parameter that 

encodes the existence of feature     in classification, and 

   is a given binary that encodes the existence of 

sensor s  in data collection: 
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Our objective is to minimize function Z given by: 

𝑍 =  ∑𝛼 𝑤 

 

   

+ ∑ ∑𝛽  𝑝  

 

   

 

   

        (3) 

Subject to: 

λ   ≥  Λ                                              (4) 

Which λ    is the localization accuracy, and Λ  is the 

minimum acceptable accuracy for on-body sensor 

localization. 

A greedy approach is proposed to solve the MCLD 

problem. A brief description of the algorithm is as 

follows: at each stage, the algorithm selects the feature 

with the highest rank; features are ranked based on 

the product of computation and the rank of feature 

using the ranker algorithm implemented in Weka [16]. 

Then, the number associated with each feature is 

normalized.  In each step, the feature with the smallest 

number is selected which is the best choice in terms of 

power consumption, and importance. 

 

Algorithm 1: Greedy Approach to Find Power 
Optimized Set of Features 

INPUT: Activity Data Segments 
OUPUT: Power Optimized Set of Features   
 =    

1: Generate Exhaustive Set of Statistical Features 𝑓   

According to Table 1. 
2: Rank remained features based on power 
consumption and importance in localization. 
3: Add the next highest rank feature to   

4: Perform localization using the selected features and 
kNN classifier. 
5: if  λ   ≥  Λ stop, else go to stage 2. 

 

In the next step, the kNN classifier is used to classify 

and measure the accuracy of the currently selected 

feature set. Also, in each repetition, feature ranking will 

change; as we add a feature from a specific sensor, the 

cost of other features for that sensor is only based on 

computation power. This process continues until the 

given accuracy threshold is obtained. This approach is 

shown in the Algorithm 1. 

Experimental Results 

We calculated the energy consumption for each feature 

based on the power consumption of the MSP430 

microcontroller, which is available on the TelosB motes 

used in our experiments. The power consumption of the 

gyroscope used in our experiments is 31.35 mW, 

whereas the accelerometer consumes 2.64 mW in 

active mode. 
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We assumed that for each sensor (e.g. the 

accelerometer), the power consumption is evenly 

distributed among different axes of the sensor. Thus, 

the power consumption for each axis of the 

accelerometer is 0.88 mW, whereas for the gyroscope 

this value is 15.67 mW. In our experiments, the 

duration of each activity was 2.5 seconds on average. 

Therefore, we could infer that the amount of energy 

dissipation to sense each data segment is 2.2 mJ and 

39.17 mJ for each accelerometer and gyroscope sensor 

respectively. The set of features extracted from 

individual sensor streams and the corresponding power 

consumption for each feature is shown in Table 1. This 

list includes ten statistical features, and ten 

morphological features for each data segment.  

We used a network of wearable motion sensors with 

accelerometer and gyroscope sensors that collect data 

through a wireless link on each node’s transmission 

unit.  We used the sensor node in [1] to collect data in 

this paper. Figure 1 shows the body locations on which 

the sensor is worn during data collection. 

 

 
 
 
 
 
 
 

 

 

 

 
 
 
 

 

Figure 2. Experimental movements 

 

A survey study in [17] reports that the number of 

sensor nodes used for activity recognition may vary 

from a single node to 19 sensor nodes resulting in an 

accuracy that ranges from 79% to 98%. In this paper, 

we decided to use seven sensor nodes located on 

different body segments. Through our prior research, 

we have found that this setting provides reasonably 

high classification accuracy for activity recognition.  

The data collection was performed for a variety of 

movements. The reason that we used different types of 

movements is to create a reasonable dataset to train a 

classifier for localization purposes. Therefore, on-body 

localization could be performed without knowledge 

about activity types in testing mode. The data collection 

Figure 1. Data collection setting: sensor node and 

body locations 
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was performed with 14 different types of transitional 

movements that mimic typical daily activities. The list 

of these transitional movements is shown in Figure 2. 

Unlike previous research, our localization algorithm 

does not need to know the activity performed by the 

user because the classifier is trained based on different 

types of movements.  

The feature selection was performed on a PC. The 

output of the algorithm, which is a set of power-

optimized features, was used for execution on the 

sensor node prototype. The localization is executed 

prior to activity recognition during the setup time on 

each node to determine the location of the node. 

Table 2 shows the accuracy of individual node 

localization using various feature sets that have been 

selected by our feature selection algorithm.  

Table 3 shows the energy consumption of various 

configurations. As it can be observed from this table, 

for accuracy thresholds of 70% to 99%, we acquire 

total energy savings that range from 99.95% to 88% 

compared to the case with the 100 features used in the 

classification procedure. Furthermore, we can see that 

the accuracy is higher compared to the case where all 

the features are involved in the classification. Also, we 

can see that adding more features for classification 

beyond a certain point will decrease the localization 

accuracy perhaps due to addition of features that are 

irrelevant to the classification problem.  When all 

features (100 features per node) are used for 

localization, the overall accuracy of the kNN algorithm 

is only 75.4%. The accuracy, however, reaches an 

average of 99.85% resulting in 88% energy savings. 

Conclusion 

In this paper, we presented a signal processing 

approach for on-body sensor localization with 

applications in activity recognition and monitoring. Our 

approach relies on computationally simple classification 

algorithms that operate on a small set of low 

complexity features extracted from wearable sensor 

nodes. The algorithm not only outperforms previous 

techniques in terms of power, but also obtains much 

less computing complexity and higher accuracy. 

An important observation based on the results obtained 

in our study is that a limited number of features 

extracted from a sensor node can be effectively used to 

detect the precise location of an on-body sensor. It is 

also interesting that these prominent features can be 

used separately from accelerometer or gyroscope 

sensors while obtaining a reasonable level of 

localization accuracy. A wearable sensor can potentially 

be worn on many different locations on the body. In 

this paper, we focused on an experimental setting with 

seven body locations. In the future, we plan to collect 

data from a larger set of wearable sensors and revise 

our algorithms accordingly. 
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#Features Sensors Waist R-Wrist L-Wrist R-Arm L-Thigh R-Ankle L-Ankle 

10 Acc–Z 90% 72.9% 71.2% 77.6% 70.6% 66.2% 63.5% 

13 Acc-X,Y 83.2% 85.1% 89.5% 97.1% 79.04% 82.2% 71.5% 

23 Acc-X,Y,Z 96.2% 96.1% 97.6% 99.5% 91.7% 87.1% 89% 

2 Gyro-X,Y 98% 99.5% 100% 99% 98% 97.5% 100% 

5 Gyro-X,Y 99.5% 100% 100% 99.5% 97.6% 100% 100% 

10 Gyro-X,Y 100% 100% 100% 100% 99% 100% 100% 

15 Gyro-X,Y 99% 100% 100% 100% 98.2% 93.5% 100% 

100 All  78.4% 67.9% 70.2% 70.2% 78.1% 75.5% 87.5% 

Table 2. The accuracy of individual node localization using various feature sets 

Accuracy #Features 
Selected 

Sensors 

Computation 

Energy(nJ) 

Sensing 

Energy(mJ) 
Total Energy(mJ) 

Energy 

Saving 

73.15% 10 Acc –Z 450 2.2 2.65 99.59% 

83.92% 13 Acc-X,Y 1190 4.4 5.590 99.14% 

93.89% 23 Acc-X,Y,Z 1640 6.6 8.24 98.74% 

98.85% 2 Gyro-X,Y 90 78.34 78.43 88.05% 

99.51% 5 Gyro-X,Y 225 78.34 78.565 88.03% 

99.85% 10 Gyro-X,Y 450 78.34 78.79 88% 

98.67% 15 Gyro-X,Y 675 78.34 79.015 87% 

75.4% 100 All Sensors 571688 84.94 656.628 0% 

Table 3. The energy consumption of various configurations 
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