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Abstract

In the existing multimodal systems for activity
recognition, there is no single method to process different
sensor modalities at different on-body positions.

Moreover, sensor types are often selected and optimized
so as to accord with the goal of application. The
complexity makes those systems infeasible to be deployed
for new settings. This paper proposes a unified system
which works with any available wearable sensors placed on
user's body to spot activities. Each data stream is treated
uniformly through our proposed template matching
WarpingLCSS to spot activities. With the uniformity in
extracting activity-specific patterns from raw sensor
signals, our proposed system is compatible with respect to
modalities and body-worn positions.

We evaluate our system on the Opportunity dataset of
four subjects consisting of 17 hard-to-classify classes (e.g.,
open/close drawers at different heights) with 17 sensors
belonging to three modalities (accelerometer, gyroscope
and magnetic field) attached at different on-body
positions. The system achieves good performances (63%
to 84% in F1 score). Moreover, the robustness and
efficiency to addition and removal of sensors as well as
activity classes are also investigated.
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Introduction

Continuous activity recognition (activity spotting) is a
core component in context-aware systems. It enables a
variety of applications such as ambient assisted living,
human computer interaction. In activity spotting, actions
of interest and their temporal boundaries are detected in a
continuous data stream in which they are randomly mixed
with arbitrary non-interest actions (null class).

In the past few years, promising results from body-worn
sensors for activity spotting have been presented [1, 13].
Many modalities, such as motion-related ones
(acceleration, rate of turn, magnetic field) [1, 5],
temperature [6] or sound [7] have been explored as inputs
to activity recognition systems. Nevertheless, with the
increasing availability of commercial wearable sensor
devices (such as smartphones, watches, glasses and, in a
near future, sensor-equipped garments), the multimodal
aspect is ready for being fully exploited.

Why are there no multimodal activity spotting systems
readily deployed in commercial applications? One
challenge is that recognition chains for different sensor
modalities need still quite some hand-crafting for being
deployed. Features and classifiers used for accelerometer
data differ substantially from the ones needed for
gyroscope or compass data, or audio. Even for the same
modality, the needed features can differ for sensors
mounted on different parts of the body. Furthermore,
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since each modality allows to recognize some restricted
sets of activities, system designers still tend to solve
specific activity recognition problems with specific sensors.

Other challenges of a unified multimodal framework that
make it easily deployed in any settings are the following:

e If new sensors are worn by the user (e.g., the user wears
a new smart watch), these should be integrated into the
system smoothly, without asking the user where on the
body the devices have been mounted or which classifier
should be used for new data from those sensors.

e The system should handle missing sensors in run-time
(e.g., the user gets off his sensor-equipped shoes)
without interfering with other sensors.

e The system should also adapt new activity classes of
interest smoothly without retraining the whole system.

In this paper we make one step towards a unified
framework for multimodal activity recognition which
attempts to overcome the challenges addressed above.
Our system treats different modalities, and sensors with
the same modalities at different on-body placements in a
homogeneous way. Specifically, each data stream is first
quantized into strings of symbols by using k-means (here
serving as a vector quantization step) and then substring
matching is performed by the fast and efficient template
matching method WarpingLCSS [8] to spot activities. Our
system recognizes activities by extracting activity-specific
patterns from raw sensor signals, hence it is agnostic with
respect to modalities and on-body positions. Thus, it can
combine any available wearable sensors placed on user’s
body to spot activities. Besides that, our system takes the
benefit of template matching methods in which different
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classes can be trained and spotted separately so that it
can handle new activity classes easily.

We investigate two multimodal frameworks to fuse
different data sources either at the signal level (signal
fusion) or at a decision level (classifier fusion). In the
classifier fusion framework, a novel fusion technique for
template matching is proposed to combine all spotting
results from different sensors. The two frameworks will be
compared throughout the paper in terms of recognition
performance, speed, ease to add or remove sensors, and
ease to add or remove activity classes.

In this work, we test the proposed frameworks with the
recognition of hand actions (i.e., gestures), but the
frameworks apply with no loss of generality to other
activities. The proposed system is evaluated with the
complex Opportunity dataset [10], which includes 17 hand
actions using 17sensors belonging to three modalities
(accelerometer, gyroscope and magnetic field) at different
on-body positions. The performances of all subsets of
sensors in the classifier fusion framework are also given to
demonstrate its flexibility to sensor addition and removal.

Related Work

Various techniques for online gesture recognition can be
found in literature; they include Hidden Markov Models
(HMM) [12], support vector machines (SVMs) [14],
template matching methods (TMM) using dynamic time

warping (DTW) [13] or using longest common
subsequence (LCSS) [8].

With recent advances in the development of inexpensive
wearable sensors, researchers have investigated activity
recognition systems using multimodal sensors or multiple
single-modal sensors to improve the performance. In [1],
five accelerometers were attached at different on-body

809

positions to recognize physical activities. [9] used motion
sensors and force sensing resistors to recognize hand
actions for quality inspection in car production. The
fusion of multiple data sources can be performed either
early at signal level, feature level [6], or late at decision
level (i.e., classifier fusion) [1, 9].

For each modality, a wide range of features and supervised
learning techniques for activity recognition has been
explored [4]. As one example, accelerometer data can be
classified with Naive Bayes [1], SVMs [14], C4.5 decision
trees [1], HMM [12], TMM [8] and a variety of features in
both time and frequency domains can be extracted [4].
Due to the diversity of methods and features, the existing
multimodal systems selected different methods and
features for different modalities or sensors mounted at
different on-body positions [9, 13]. For example, in the
application of car quality inspection [9], inertial sensors
must be attached at arms and torso in order to acquire
the trajectories of wrists and elbows, force sensing
resistors attached at lower arms to monitor muscle. Four
different methods including K-Nearest-Neighbor (KNN),
TMM, k-means classifier, and Bayes classification were
used in that work. They also trained different classifiers
linked to the different modalities with different set of
labels for the best possible performance purpose.

WarpingLCSS was first presented in our previous work [8]
as a fast and efficient method to spot gestures using one
3D accelerometer on arm. The method showed robustness
against noisy annotations and high variances in activity
execution. In the work by Chen et al. [2], they
investigated WarpingLCSS with multi-sensor fusion
combining 6 different accelerometers at wrists and arms.
However, the performance was not improved. According
to the best of our knowledge, there is no previous work



that investigates the use of WarpingLCSS towards a
unified multimodal system, especially with other
modalities such as gyroscopes, magnetic sensors.

Multi-modality System

In our system, we use the recently proposed template
matching WarpingLCSS [8] as a core module for data
processing, training and activity spotting. Data is
recorded continuously and synchronously from multiple
sensors. The training data is manually labeled with a list
of activity classes of interest. Activities which are not in
the list are considered as null class.

We propose two frameworks for fusing multimodal sensors
at two different processing levels: classifier fusion and
signal fusion. In the classifier fusion framework, signal
data from each sensor are processed separately by a
template matching (TM) module and then the spotting
outputs from all sensors will be fused to have a final
recognition output. Different TM sessions can be run in
parallel. In contrast, in the signal fusion framework,
signals from all sensor modalities are combined into one
data stream before being fed into the TM module.
Figures 2 and 4 gives an overview of the two frameworks.

Template Matching

The TM module processes input data, generates
templates for activity classes in the training phase and
recognizes activities in the spotting phase. An overview of
the TM module is shown in Figure 1.

First, the TM module applies k-means to all training data
points and quantizes the signal input to their closest
cluster centroids. Thus, signal data are then represented
as a string of symbols (i.e., the indices of the centroids).
The number of symbols k depends on the variation of the
input signal. Accordingly, the cluster centroids are
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representative points which can capture body movements
at sensor-attached positions regarding to specific
activities.

Training - Select Templates
Lo Weight (X, class)
- Rejection Threshold (RT)
>| Kmeans g - Weight (X, class) )

8 E 8

2 8 3|k

IS g £

8 [ 2
X ( Quantiz.e to ]7 { WarpingLCS$ ) Spotted Activities

centroids Symbol string [ts,te,label,score]

et
e Spotting

Figure 1: Template Matching Module. X is data input from
one or multiple combined sensors.

In the training process, one or more templates are created
for each activity of interest to represent the typical
patterns for that class. The templates are chosen as
instances that have the highest average longest common
subsequence (LCSS) scores [3] to all other instances of
the same class. Additionally, a rejection threshold needs
to be calculated for each activity class in the training
phase to be able to reject signals not belonging to that
class upon recognition. Let 1() and and o(®) be the mean
and the standard deviation, respectively, of LCSS values
between the template of a class c and any string
belonging to the same class. We calculate the rejection
threshold to be below 1(¢) by some standard deviations:
19 — h() % (@) with h(®) = 0,1,2,.... The value of h(¢)
is determined by testing the recognition of class c on the
training data and selected as the one which yields the best
F1 score performance. Specifically,

9 precision. * recall.
*

Fl, = (1)

precision. + recall.’
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where precision. is the proportion of samples of class ¢
predicted correctly over the total samples predicted as
class ¢; recall, is the proportion of samples of class ¢
predicted correctly over the total samples of class c. Note
that the value of F'1, can also be used to indicate how
well sensor data fed into the TM module can recognize
the specific class c.

When spotting, the same process of quantization is
applied to the streaming sensor data, with the cluster
centroids identified during training. Then, for each activity
class, the WarpingLCSS method [8] is used to match the
template within the online string to spot activities
belonging to that class. Given the activity template for
class ¢, 5(¢), the WarpingLCSS score Wiste) )i, 7)
between the first i symbols of the template 5(¢) and the
first j symbols of the string s is obtained as follows:

0 ,ifi=0o0rj=0
Wi, s(i—1Li-1)+1 if 59(i) = ()

Wi () = Wisto, (i) = pd(s(0),5(7)
max { Wise (i —1,7) —p* d(39)(i),5) (i — 1))
Wise),6) (i3 — 1) = pxd(s(5),s(j — 1))

, otherwise,
where p is a penalty parameter of the dissimilarity and
d(-,-) is the normalized Euclidean distance between two
symbols (i.e., two corresponding centroids) in a range
[0,1] . When a new symbol arrives, the WarpingLCSS
processes and updates the score immediately. Hence the
computational cost of WarpingLCSS is low for online
recognition. The WarpingLCSS score grows (i.e., symbols
are matched) when an instance of the examined class is
performed and drops significantly if other classes are
performed due to the penalty terms. Additionally, the
penalty is accumulated in a time-warping manner as in
dynamic time warping (DTW) [11], hence WarpingLCSS
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penalizes the same consecutive symbols which are
mismatched only once. An activity of class ¢ is recognized
for each local maximum of W that exceeds the rejection
threshold.

Outputs of the TM module are spotted activities with a
format [start-time, end-time, label, simScore] to indicate
when the activity occurs and the similarity score
(simScore) between the activity and the template of that
class. In the TM module, the spotting of different activity
classes can be processed concurrently in parallel. A more
detailed explanation, complexity analysis and illustration
of WarpingLCSS can be found in [8].

Classifier Fusion Framework

In the classifier fusion framework, each sensor is treated
uniformly via the same process in the Template Matching
module. The spotting outputs from all sensors are
combined in the Classifier Fusion module as shown in
Figure 2. Then the Decision Making (DM) module
resolves conflicts for spotted instances belonging to
multiple classes and output the results.

Let ® and |®| be the set of sensors and the number of
sensors in the system, respectively. We represent the
spotting output from a sensor § € ® in a spotting matrix
M(S) of size C * N, with C is the number of activity
classes of interest and N is the number of samples
processed. M(S)(c, %) represents the entry at the ith
sample and the row of class c in the matrix M(S). Each
row c in the matrix, indicated as M(S)(c) stores the
information of spotted instances of an activity class ¢ from
the sensor S. Specifically, if the sensor outputs an activity
instance of class ¢ from start-time to end-time with a
similarity score simScore (i.e., [start-time, end-time, c,
simScore]), then M(S)(c,i) = simScore for all i-th
samples in the interval from start-time to end-time at the



row c. Figure 3 gives an example of the spotting matrix.

® Spotted from S,
Matching | \eignt (s1,class)
Classifier Decision
’ Fusion Making
Tamnlat Spotted from S
Matching
Weight (Sn,class)
Figure 2: Classifier fusion framework
samples
1 2 3 4 5 6 7 8 9 10
123
E drink [ O 0.8 |08 | 0.8 0 0 0 0 0 0
o
Z opendoorf 0 | 0 | O [0 |0 |0 |06]|06]|06]|0
S dosedoor|[ 0 |0 [0 [0 |o]o|o]|o]|o]o

Figure 3: An example of the spotting matrix with three
activity classes (drink, open door and close door) and two
spotted activities: [2, 4, drink, 0.8] and [7, 9, open_door, 0.6].

Classifier Fusion We propose Weighted Fusion method
to fuse the spotting results from all sensors. Let
Weight(S,c) be a prior weight to indicate how well sensor
S can recognize the specific class c. We set Weight(S,c)
as the best F'1. performance (see Equation 1) when
selecting the rejection threshold for activity class c in the
processing of sensor s. The weighted summed spotting
matrix is computed as follows.

|2]
M(c) = Z Weight(S;, c) * M(S,)(c) Ve. (2)
Siew
The similarity score of an activity in the spotting matrix

degrades if the prior performance of the sensor to
recognize the corresponding activity class is low.
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Given the fused spotting matrix M, for each spotted
activity [t1, t2, ¢, simScore], the similarity score simScore
is updated as the average score in the interval from the
time t1 to the time t2 at the row c in M. Specifically, the
updated simScore is computed as follows.

;Zi:l M(c,q)
(t2 — ¢1) [samples]’ 3)

simScore =

Consequently, the similarity score of an activity is
boosted if more sensors predict that activity performed.

Decision Making If an activity is spotted as belonging
to multiple classes (i.e., boundaries of spotted instances
are overlapping), the DM module will resolve conflicts by
deciding the class with highest similarity score as the best
match. If an activity is classified into only one class, the
DM will output the class. Otherwise, if no activity class is
spotted, the DM will output null.

Signal Fusion Framework

In the signal fusion framework, the Signal Fusion module
combines signals from all sensors into one data stream as
shown in Figure 4.

Signal

Decision
Fusion Making

Template
Matching

Figure 4: Signal fusion framework

Let d; be the dimension of signal data generated from
sensor S; € . The combined data stream from the Signal
|2
Fusion module has a dimension of Y  d;. The TM
i=1,5,€®
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® = accelerometer, gyro,
magnetic
= accelerometer

Figure 5: Sensors attached at
different places on body and their
modalities in Opportunity
dataset.

module then processes data and outputs spotted activities.
Finally, the DM module handles spotting conflicts and
outputs recognized activities as discussed above.

Experiments

We present the activity dataset, evaluation metrics and
the conducted experiments to evaluate the proposed
system in this section.

Dataset

We evaluate the system on the Opportunity dataset * [10]
which is a rich multimodal multi-sensor dataset collected
in a naturalistic environment akin to an apartment, where
users execute 17 daily gestures. The dataset contains a
large variability in the execution of the activities and null
class is predominant (37%). We use the subset of
recording corresponding to four subjects in which each
subject wears 17 sensors belonging to three modalities
(3D accelerometer, 3D gyroscope and 3D magnetic field)
attached at different on-body positions. Each subject
performs 20-40 repetitions of each gesture class. Totally,
the dataset contains 1485 activity instances. Table 1
shows the list of activity classes in the Opportunity
dataset. Note that there are three drawers located at
different heights and two different doors in the dataset.
Figure 5 shows locations of sensors on body (i.e., right
upper arm (RUA), right lower arm (RLA), left upper arm
(LUA), left lower arm (LLA), back (BACK), right shoe
(RSHO) and left shoe (LSHO)) and their modalities. The
signals of all sensors are recorded at a frequency of 30Hz.

Null clean Table (CT) open Drawer 1-2-3 (ODr1-2-3)

close Drawer 1-2-3 (CDr1-2-3) | open Door 1-2 (OD1-2) | close Door 1-2 (CD1-2)

open Fridge (OF) close Fridge (CF) drink Cup (D)

open Dishwasher (ODi) close Dishwasher (CDi) | Toggle Switch (TS)

Table 1: Activities in Opportunity dataset.

Thttp://www.opportunity-project.eu/challengeDownload
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Evaluation Metrics

Generally, activity classes may occur non-uniformly in
real-life datasets. In the Opportunity dataset, null class is
predominant (37%). Therefore, we use the weighted
average sample-based F1 score to assess the performance
of activity recognition. It is computed as the sum of the
F1 scores of all classes, each weighted according to the
proportion of samples in that particular class. Specifically,

F1= Zw * Fl,,

where c is the class index, w, is the proportion of samples
of class ¢, and F'l. is computed as in Equation 1.

We present two ways of computing the F1 score, either
including (F1-Null) or excluding the null class
(F1-NoNull). F1-NoNull does not consider the null class,
but still takes into account false predictions of gesture
samples or instances misclassified as null class or vice
versa. F1-NoNull value represents how well the
recognition system detects activity classes of interest. The
recognition system that has high values of both F1-Null
and F1-NoNull predicts well both activities and null class.

Experiments on Multimodal System

For each subject, we perform experiments in 5-fold cross
validation. All raw signals (30Hz sampling rate) are
down-sampled for a faster computation. Specifically, an
average value of each sliding window of size 6 samples and
overlap 3 is extracted to represent the corresponding set
of data points in the window. In our experiments, the TM
module generates only one template for each activity class.

In the classifier fusion framework, the number of symbols
(i.e., number of clusters in k-means) is selected
empirically k = 20 for each 3D sensor. Note that k can be
selected by using cross-validation on the training data.
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In the signal fusion framework, the Signal Fusion module
combines all 17 sensors into a data stream with a high
dimension of 51. Consequently, the number of symbols is
selected much higher to capture variants in the combined
movements at seven on-body positions (see Figure 5). We
select empirically k = 200.

Results and Discussion

Performance of One Sensor

The performance of a sensor reflects how well that sensor
recognizes the activities. Figure 6 shows the performance
of each sensor (i.e., number of sensors = 1) and their
combinations in the classifier fusion framework. Due to a
space limit, we report only the result from subject 1,
however, those performances for other subjects have a
similar trend. As seen in Figure 6, the performances of
different sensors vary significantly. The sensors on shoes
(LSHO_A and RSHO_A) give the worst performance since
their signals are not distinguishable for different gesture
executions (e.g., open doors and open drawers have the
similar patterns of foot movements). The accelerometer at
lower dominant arm (RLA_A) gives the best performance
for subject 1. Meanwhile, the magnetic sensors at lower
dominant arm give the best results for subjects 2-4.

Comparison between Two Frameworks

Table 2 show the results on the use of all 17 sensors in the
two proposed fusion frameworks. They both achieve a
good performance for the four subjects (63% to 84%
F1-Null). In average, the performance of the classifier
fusion framework on 17 sensors increases by 16% F1-Null
and 21% F1-NoNull compared with the average
performance of one sensor. It also increases by 4%
F1-Null and 15% F1-NoNull compared against the
average performance of the best one-sensor.
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The signal fusion outperforms the classifier fusion about
7% F1-Null and only 1% F1-NoNull in average. It means
the signal fusion can detect the null class better than the
classifier fusion. The rationale is that the signal fusion has
a global view of data from all sensors at once before
processing; meanwhile the classifier fusion framework has
only a local view of data from each sensor. The hand
actions of concern and the null class may have the similar
foot movements (e.g., walking, standing). Hence, data
from the shoe sensor may detect the activities when the
null class actually occurs. Even the other sensors can
detect the null instance, the classifier fusion still outputs
the false detected activities. By contrast, the signal fusion
framework outputs an activity only when the combined
pattern of that activity from different sensors is matched.

Besides the recognition accuracy, we compare the
advantages and limitations of the two frameworks with
regards to speed, ease to remove or add sensors to the
system, and ease to add or remove activity classes. They
are summarized Table 3.

Classifier fusion | Signal fusion
Parallelism at sensor * Yes * Do not care
Parallelism at activity class * Yes * Yes
Sensor Addition or Removal * Easy * Hard
Class Addition or Removal * Easy * Easy

Table 3: Comparison between classifier fusion framework and
signal fusion framework.

The running time of our proposed system depends on how
many sessions of the TM module run to spot activities. In
the signal fusion framework, the number of TM session is
only one. In the classifier fusion framework, it equivalents
to the number of sensors deployed in the system.
However, those TM sessions for different sensors can be
executed in parallel. Therefore, if the parallelism is
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Subject 1 Subject 2 Subject 3 Subject 4 Average
Method F1-Null | F1-NoNull | F1-Null | F1-NoNull | F1-Null | F1-NoNull | F1-Null | F1-NoNull | F1-Null | F1-NoNull
Classifier Fusion | 0.74 0.79 0.63 0.67 0.75 0.80 0.65 0.71 0.69 0.74
Signal Fusion 0.77 0.77 0.67 0.68 0.84 0.81 0.74 0.73 0.76 0.75

Table 2: Performance of two frameworks on 17 sensors in the Opportunity dataset.

maximized, the running time of the two frameworks to
spot activities is equivalent (i.e., time to run the TM
module once).

Each sensor is processed separately in a uniform way in
the classifier fusion framework. Therefore, it enables easy
addition and removal of sensors without interfering with
the use of other sensors to spot activities. Meanwhile, in
the signal fusion framework, the combination of all sensor
signals into one data stream before being processed will
require the same sensor settings in the training and
spotting phases so that the quantization step can proceed
properly. Hence, adding or removing sensors in the signal
fusion framework requires retraining the whole system.

The TM module spots each activity class separately.
Therefore, the spotting for different activity classes can be
executed independently in parallel. Hence, our proposed
recognition system with the core Template Matching is
very flexible in adding or removing activity classes.

Sensor Combinations in Classifier Fusion Framework

We show the performances of the classifier fusion
framework on all subset combinations of 17 sensors in
Figure 6. The results show that the performances among
groups of sensors differ less when the number of sensors
increase. This indicates that adding a better performance
sensor into a group increases the average performance.
The average performance increases significantly in both
F1-Null and F1-NoNull as the number of sensors increases
from 1 to 6 and then keeps stable. Generally, the
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combination of more sensors does not always yield the
better performance (e.g., two accelerometers at lower arm
and upper arm may not improve the detection of OD1
and OD2). The best-combination performance increases
dramatically as the group size increases from 1 to 4.
F1-NoNull is almost unchanged after reaching the best
performance. Meanwhile, the F1-Null of 17 sensors is less
than the best performance by 10% in average. As
discussed above, the presence of not-so-distinguishable
sensors (e.g., shoe sensors) in the classifier fusion makes
the recognition more confused in detecting the null class.

Table 4 gives the subset combination of 17 sensors that
gets the best result. The orientation sensors on the back
and arm (gyroscope and magnetic sensors) distinguish well
the hard-to-classify activities in the Opportunity dataset.

Sensors (Number of sensors) F1-Null | F1-NoNull

Subject 1 | BACKM, RUAG, RLAG, RLAM,|082 |083
LUAA, LLA_A (6)

Subject 2 | BACK_G, BACKM, RUAG, RUAM, | 0.71 073
RLA_G, LUAA (6)

Subject 3 | BACK_G, RUA_M, RLA_G, RLA_M (4) 0.87 0.85

Subject 4 | BACK_M, RUA_G, RLA_A, RLA_M (4) 0.75 0.74

Table 4: The combination of sensors giving the best
performance in the classifier fusion framework.

Conclusion and Future Work

We have introduced the unified multimodal system for
activity spotting by processing different sensors in a
homogeneous way based on the template matching
WarpingLCSS. Two fusion frameworks are investigated:



the classifier fusion and the signal fusion. The results of
the experiments show the flexibility and efficiency of our
system in handling multimodal sensors. The more sensors
are added into the system, the equal or better
performance is achieved in average. Moreover, the system
is flexible in adding or removing activity classes. The
classifier fusion framework provides the ease to add or
remove sensors. Meanwhile, the signal fusion framework
yields the better performance in classifying null classes
due to a global view of data. In future, we plan to apply
sensor selection algorithms in the classifier fusion
framework to achieve the best performance. We also plan
to investigate other modalities in our system.
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