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Abstract
Many activity recognition systems using accelerometers
have been proposed. Activities that have been recognized
are “single” activities which can be expressed with one
verb, such as sitting, walking, holding a mobile phone, and
throwing a ball. In actual, however, “combined” activities
including more than two kinds of state and movement are
often taken place. Focusing on hand gestures, they are
performed not only while standing, but also while walking
and sitting. Though the simplest way to recognize such
combined activities is to construct the recognition models
for all the possible combinations of the activities, the
number of combinations becomes immense. In this paper,
we propose a recognition method for combined activities
by learning single activities only. Evaluation results
confirmed that our proposed method achieved 0.84 of
recall and 0.85 of precision, which is comparable to the
method that had learned all the combined activities.
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Introduction
Along with the progress in wearable computing, many
context-aware systems with accelerometers have recently
been introduced. In the procedure of making an activity
recognition system, developers generally define the
objective activities, collect their data, annotate them, and
construct the recognition models. Therefore, recognition
results are limited within the predefined activities. In
other word, if we want to recognize a combined activity
holding a mobile phone while walking, training data for
the activity has to be collected and annotated so,
otherwise, recognition result would be either walking or
holding a mobile phone.

Here, we define two types of activities; global activity and
local activity. Global activity is a bodywide movement,
such as walking and standing. Multiple global activities
contradict each other at a time. Local activity is a
movement of a specific parts of body, such as throwing
and holding something. Multiple local activities coexist
unless these are on the same part. The simplest way to
recognize combined activity is to construct recognition
models for all the combined activities, but the number of
the possible combinations of global and local activities
gets immense. Supposing five global activities; standing,
sitting, walking, running, and bicycling, and ten local
activities of hand gestures, data for the 50 patters must
be collected. As one kind of hand gesture is added, data
for the gesture performed during five global activities must
be captured, and it is a backbreaking task. Moreover,
considering foot gestures, the possible patters are global
activity×local hand activity×local foot activity. However,
these combined activities are not negligible since they are
physically possible and might occur in our daily life.

Problem of combined-activity recognition is not only

taking time for collecting training data, but also
annotating data. After collecting all the data through
long experiment, the data have to be annotated with
ground truth. Figure 1 shows acceleration of a chop
gesture while running and while standing. It is easy to
find starting point and end point for chop while standing,
whereas it is hard to trim it exactly by visual check for
chop while running. Someone might think that
recognizing activity of each part of body individually and
integrating them produce correct activity. However, as
shown in Figure 1, a gesture while running is different to
that while standing. Moreover, arm swing of running is
included in the beginning and ending of the gesture unless
the gesture is trimmed with a tightfitting window. Motion
of running is propagated, the gesturing is slightly
different, and part of running motion is included before
and after the gesture, which leads to misrecognition.

Starting point

Standing

Chop

End point

Running

Chop
Starting point
and end point
are not clear.

R arm x
R arm y
R arm z

R arm x
R arm y
R arm z

Figure 1: Waveform of an accelerometer mounted on the right
wrist: a chop gesture while running (left) and while standing
(right).

Our previous work tackled on gesture recognition while
moving. Gestures having been recognized in the research
are not combined ones, but single ones which are
smoothly changed from and to global activity, such as
walking[3]. An effective method to treat combined
activity has not been reported.

We developed the system that recognizes combined
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activities from training data of single activities, i.e. global
activities and local activities while standing. The system
classifies each part of the body to posture, behavior, and
gesture, from fluctuation and autocorrelation in the
acceleration data. In this work, we define posture,
behavior, and gesture as follows: Posture is a state of a
user remaining stationary lasting for a certain length of
time, e.g. sitting and standing. Behavior is a state of a
user doing periodical movement lasting for a certain
length of time, e.g. walking and running. Gesture is not a
state but once-off action having starting point and
endpoint that sporadically occur, e.g. punch and draw a
circle in the air.

In general, autocorrelation plot of a periodical wave shows
high peaks. When parts of sensors are showing high
peaks, the corresponding body parts are meant to have
constancy and are classified to behavior, otherwise the
parts are classified to gesture. Finally, the system outputs
conclusive recognition result from the recognition results
of each part. By using our system, combined activities
such as throw while walking and holding a mobile phone
while running are recognized only from single activities;
walking, running, throwing, and holding a mobile phone.

Related work
Studies on activity recognition are listed in Table 1,
however most of them focus on single activities, such as
ambulation and posture. One study recognizes eight
activities including vacuuming and brushing teeth with an
accelerometer attached to the pelvic region[4]. Other
study employs twenty-two kinds of sensors to recognize
lying, rowing, running, Nordic walking, bike, walking,
sitting, and standing[1]. Though walking carrying items
activity seems combined activity, it cannot be separated
and recognized by combining other activities, i.e. running

carrying items activity and holding items activity cannot
be recognized in this architecture.

Table 1: Activities recognized and sensors used in past work
on activity recognition.

Ref. Activities recognized
# of

Sensor kind
Sensor

sensor position

[1] ambulation, posture, 5 2D acc×5 left elbow
scrubbing, vacuuming, right wrist
folding laundry, brushing teeth, torso
bicycling, eating or drinking, left knee
working on computer, right ankle
walking carrying items

[2] ambulation, 22 air pressure, mic, pulse, wrist
posture, ball sensor, light, switch, upper back
putting clothes, EKG, humidity, 3D acc×2, below neck
eating, temperature, respiratory, finger
rowing, 3D compass×2, GPS, armpit
bicycling, heart rate×3, SaO2×2, chest
respiratory skin temperature, forehead

skin resistance shoulder

[4] ambulation,posture, sit-ups, 1 acc pelvic region
vacuuming, brushing teeth

[5] hammer, file, sand, saw, screw, vise, 2 acc×2 wrist
drill, clap, use driver, grind elbow

[6] push button, handshake, 5 gyro×5 wrists
phone up, phone down, cutlery, upper arms
door, coin, drink, spoon, handheld upper torso

[8] draw ‘>’ mark, square 1 wii remote hand
shift left to right,
shift right to left,
shift bottom to up,
shift up to bottom,
clockwise circle,
anticlockwise circle

Georgia Tech Gesture Toolkit[5] as a tool to support
gesture recognition has been proposed by Westeyn et al.
This is a toolkit that enables ordinary users who do not
have enough knowledge on speech recognition to use
existing HMMtoolkit1 with ease. In the literature, four
applications are presented, one is gesture recognition with
two 3-axis accelerometers positioned at wrist and elbow,
and achieves 93.3% accuracy for ten kinds of gestures
such as grinding, sawing, and screwing. The system
proposed by Junker et al.[6] recognizes ten daily short
actions, such as pushing a button and drinking, and
achieves approximately 80% precision and recall.

1HTK Hidden Markov Model Toolkit home page.
http://htk.eng.kcam.ac.uk/.
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Innovative point of this study is that it partitions the
stream of sensor into several segments that represent
atomic human movement by using the sliding-window and
bottom-up (SWAB) algorithm[7]. The method proposed
by Liu et al. recognizes eight gestures such as drawing a
line and a circle, which are recommended by Nokia
laboratory, with one 3-axis accelerometer[8]. This research
captures more than 4,000 samples from eight test subjects
for a long period. They use Dynamic Time Warping
algorithm (DTW)[9] as a recognition algorithm and
achieve 98.6% accuracy by successively renewing training
data.

Activities that have been targeted in these works are single
activities. Combined activities have to be defined one by
one. However, the number of possible combinations
increases in multiple order of the number of global and
local activities, causing much time to capture training
data. Capturing ten global activities and ten 10-second
local gestures for five times takes 5,000 seconds. This is
an actual time of movement and more than double or
triple time is needed considering interval and rest.

System structure
Posture and behavior are state lasting for a certain period
of time and consist of periodic pattern of acceleration
waveform. These activities are generally recognized with a
classifier such as SVM[13] after converting raw data into
mean, variance, fast Fourier transform (FFT) coefficient
over a time window. This approach enables high-speed
recognition since not all data in the window but feature
value is used. Moreover, one of the advantages of using
feature value is also that the recognition process does not
have to consider which part of the movement is included
in the window, e.g. beginning of the window does not
have to fit the specific motion of steps of walking, since

feature value discards temporal information.

On the other hand, gesture is a once-off action that has
starting point and endpoint, which is different to posture
and behavior. Feature-based approach cannot distinguish
similar gestures such as rotating arm clockwise and
anticlockwise since feature value does not have
information on how it moved, therefore gesture must be
recognized in a different way. In general, gestures are
recognized with a template matching algorithm such as
dynamic time warping (DTW) or a statistical model such
as hidden Markov models (HMM), after trimming an
actual movement from stream data. The conventional
method forced the users to indicate gesture interval by
pushing a button of a device or by standing still before
and after the gesture[10]. It is hard to stop motions or
perform specific gestures to indicate starting point. Taking
out a device or keep holding a device to push button while
performing gestures is also unrealistic. Recognizing a
gesture without considering starting point and endpoint,
misrecognition occurs or miss out the gesture buried in
behavior. Our system classifies user activities into posture,
behavior, and gesture for each body part, then apply
DTW to gesture or apply SVM to posture and behavior.

Our system consists of three phases, as shown in Figure 2.
The first phase classifies activities of each part of body
into three types; posture, behavior, and gesture. The
second phase recognizes activities according to the
activity type. The third phase integrates the recognition
results and outputs conclusive result.

In this paper, we assume that user attaches five
accelerometers on their both wrist, hip, and both ankle.
Activities are four postures (sitting, standing, lying, and
kneeling), five behaviors (walking, running, bicycling,
descending stairs, and ascending stairs), five
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hand-gestures (chop, throw, punch, draw a clockwise
circle, and draw a anticlockwise circle), and two
hand-postures (holding a mobile phone, and raising a
hand). The sampling frequency is 20 [Hz], which is
sufficient for activity recognition as reported in [11].

Activity

classification

Activity

recognition

Right arm

Left arm

Hip

Right leg

Left leg

Gesture

Behavior

Behavior

Behavior

Behavior

Chop

Walk

Walk

Run

Walk

Global activity

by weighted 

majory decision

Walk

Chop with

walking

Activity

integration

User                     Sensor data

Figure 2: Recognition flow.

Activity classification
Displacement detection
Activity classification phase checks for displacements in
the sensed data. Supposing time t = T now, if a
difference of moving average over 20-sample (1-second)
sensed data x(T ) and current value x(T ) runs over a
threshold ε, our system detects a movement as a following
equation. Otherwise, our system judges that the user is
maintaining a posture.

if |x(T)− x(T)| > ϵ ⇒ Behavior or Gesture
otherwise ⇒ Posture

(1)

The region of x(t)± ε is called the epsilon tube, which
removes displacements. In this paper,
ε = max{ave{std(Leg)}, 200}, where
Leg =

√
leg(x)2 + leg(y)2 + leg(z)2[mG]. std is a

standard deviation over a window and ave is an average
over both legs. The vibration of movement of legs is
propagated to hand, which produces not-small values.
While the movement of legs is not intense, ε is set to 200
[mG] since fluctuation produced while being stationary

was up to 100 [mG]. Since the current value x(t) might
temporarily goes into the epsilon tube even while moving,
posture begins only after x(t) stays within the epsilon
tube for more than 0.25 second. These values are
obtained from our pilot studies. As shown in Figure 3,
while the data is within the epsilon tube, the system
judges that the parts of body are maintaining a posture.
When the data indicates movement, this process goes on
to constancy decision phase.

(Go to constancy decision)

Raw data x(t)

Moving average x(t)

Posture Behavior or gesture

+ε

-ε

t

Figure 3: Displacement detection.

Constancy decision
Basically, data on walking include iterations in rhythm
with the steps. On the other hand, gestures are once-off
actions and do not have iterations. Note that we consider
that the iterations of once-off actions are behaviors. In
this phase, the autocorrelation function (ACF) finds
iterations in the user’s movements, and classifies the
movement into behavior or gesture. The discrete ACF
Rxx(τ) at lag τ for a data sequence x(t) is defined as

Rxx(τ) =
∑N−1

t=0 x(t)x(t− τ), where N is the window
size for the ACF calculation and set to 64 samples (3.2
seconds), which is long enough to capture at least two
iterations. In addition, since ACF shows a maximum at τ
= 0, all the values of ACF are normalized by
R′xx(τ) = Rxx(τ)/Rxx(0) so that the range is
(−1,+1). The system has to decide whether the
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movement has constancy or not. Figure 4 shows
acceleration waveform and its ACF of walk, chop, then
walk again activity. As shown in the figure, the ACF of
walking shows clear peaks, whereas the ACF of chop does
not have high peaks. Constancy is detected when the
height of the first peak R′xx(n)(n > 0) exceeds
α · (1− n/N), where α is a coefficient set to 0.6. Reason
n/N is used is that the height of the first peak linearly
decreases as τ increases.

if R′
xx(n) ≥ α · (1− n/N) ⇒ Behavior

otherwise ⇒ Gesture
(2)
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Figure 4: Accelerations of chop gesture while walking (left)
and autocorrelation of walking (upper right) and chop (lower
right).

Intille et al. focus on acquiring in-situ training data and
mention that acceleration data of walking in laboratory
displays consistent gait cycle. On the other hand,
acceleration data of the same person outside the
laboratory may display marked fluctuation in gait cycle
and length[12]. Also we think that is true and the data
obtained from same subject on different days are different.
Although acceleration data fluctuate in the range of day
or hour, data in the range of few seconds or shorter are
significantly periodic, which could produce constancy.
Moreover, since our approach is unsupervised and does
not require training, influence of differences among
individuals and users’ conditions are small.

Activity recognition
Activity recognition phase recognizes activities of each
part of body according to the activity types. For posture
data, the mean value of the data in the window is
calculated as a feature value and the posture is recognized
with SVM[13] that has learned only postures. Since the
variance of postures is almost zero, only the mean is used
for the recognition. SVM operating on the mean and
variance is used for behavior data, whereas DTW[9]
operating on trimmed original wave over a window is used
for recognizing gestures. SVM and DTW has learned
behaviors only and gestures only, respectively.

Activity integration
Since each part of the body outputs activity recognition
result individually, these have to be integrated in order to
decide conclusive recognition result. Even if the user is
just walking, recognition results of all parts are not
necessarily walking. This section describes the method to
integrate them.

In this paper, we assume that if recognition result for
hand is either posture, hand-posture or hand-gesture, it
will be a local activity, otherwise local activity will be null.
Then global activity is decided by a weighted majority
vote. We use recall of recognition result for training data
as a weight. Each body part has one voting right, but it is
weighed, then the weighted votes are summed up over the
body except for local activity. For example, in Figure 2,
the recognition results of the left arm, hip, right leg, and
left leg are walk, walk, run, and walk, respectively.
Suppose recall of walk recognized with a sensor on the left
arm, hip, and left leg are 0.7, 0.8, 0.4, respectively, and
recall of run recognized with a sensor on right leg is 0.4,
poll to walk is 1.9 and poll to run is 0.4, resulting in
walking as global activity. Finally, combined activity is
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output by merging global and local activity. Even if a part
of body is doing different activity to global activity, user
activity is correctly recognized. For holding a mobile
phone while walking activity, the hand holding a phone is
classified into posture and recognized as holding a phone,
whereas remaining parts would be classified into behavior
and recognized as walking.

Evaluation
In this section, we evaluate our system on the basis of
recall and precision.

Setup
We evaluated our system for the data while standing,
sitting, walking, running, and bicycling. The training and
test data were taken from three male subjects aged 22 to
28 years, who wore five accelerometers2 on their right
wrist, left wrist, hip, right ankle, and left ankle. The
sampling frequency was 20 [Hz]. Activities are as listed in
Table 2: four postures (sitting, standing, lying, and
kneeling), five behaviors (walking, running, bicycling,
descending stairs, and ascending stairs), five hand gestures
(chop, throw, punch, draw a clockwise circle, and draw an
anticlockwise circle), and two hand postures (holding a
mobile phone and raising a hand). The subjects were
acted these hand gestures and hand postures while sitting,
standing, walking, running, and bicycling. Each gesture
was recorded 10 times for each global activity. All local
activities while ascending and descending, and jump and
kick while bicycling were not performed for safety’s sake.
The logged data were manually labeled. In this evaluation,
activities were recognized with three method; SVM only,
DTW only, and our method. As shown in Table 3, the
first two methods are comparisons, simply trained with all
the possible combinations. 20% of which were used for

2Wirelss Technologies Inc.: http://www.wireless-t.jp/.

training, the remaining 80% were used for testing. The
last one selectively uses SVM and DTW which learned
single activities only and integrate the results. Most part
of the test data consists of global activity and gestures
sporadically occur. Correct recognition results for gestures
which is output in one second from the gesture ends are
accounted for true positives.

Results
Table 4 shows the recall and precision of recognition for
hand-gestures and hand-postures. “-” in the table means
that the subjects were doing global activity only. The
recall and precision of gestures recognized by SVM were
quite low. This is because the feature values have
information on the orientation and exercise intensity but
do not have information on the trajectory. Combined
gestures of behavior with hand gesture or hand posture
are almost misrecognized as single behavior. Because of
the same reason, the results for gestures while standing or
sitting are also low. In addition, sitting is not correctly
recognized. This is because the subjects leaned back in
order not to hit the armrest when performing a gesture,
resulting in the large difference to the training data for
just sitting. Also, gesture motion while sitting is slower
than that while standing, resulting in small value of
variance, and average body orientation during the gesture
is similar to just sitting. Moreover, all of hold mobile and
raise hand while running were misrecognized as running
since difference of hand orientation is absorbed by that of
vibration of running. From these results, it is hard for
feature-based recognition to recognize a lot of combined
activities.

DTW, in the contrary, had high recall and precision for all
activities. It, however, is remarkable that the performance
of our proposal is comparable to that of DTW that has
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learned all the possible combined activities (9 global×7
local=63 activities), while our proposal has learned single
activities only (9 global+7 local=16 activities).

Table 2: Single activities

Kind Activity

Global

Posture

Sitting
Standing
Lying
Kneeling

Behavior

Walking
Running
Bicycling
Descending stairs
Ascending stairs

Local

Chop

Hand
Throw

gesture
Punch
Draw a clockwise circle
Draw a anticlockwise circle

Hand Hold a mobile phone
posture Raise a hand

Table 3: Proposed and
comparison methods

Method
# of

Activities trainedactivities
trained

Proposal
16

4 postures
5 behaviors
5 hand gestures
while standing
2 hand postures
while standing

SVM 63
Combinations of 9
global ×
7 local activities

DTW 63
Combinations of
9 global ×
7 local activities

Table 4: Recall and precision of recognition.

Activity Proposal SVM DTW
Global Local Recall Precision Recall Precision Recall Precision

Stand

Chop 1.000 0.917 0.925 0.633 1.000 0.950
Throw 1.000 1.000 0.839 0.942 0.996 1.000
Punch 1.000 1.000 0.874 0.989 0.964 0.996
Clockwise 1.000 1.000 0.397 0.426 1.000 1.000
Anticlockwise 1.000 0.882 0.938 0.661 1.000 0.920
Hold mobile 0.996 - 1.000 - 1.000 -
Raise hand 1.000 - 0.996 - 1.000 -
Null 0.999 - 0.919 - 0.993 -

Sit

Chop 1.000 1.000 0.736 0.866 0.993 0.908
Throw 0.955 1.000 0.840 0.296 0.842 0.983
Punch 1.000 1.000 0.880 0.680 0.920 0.625
Clockwise 1.000 1.000 0.831 0.503 0.805 0.914
Anticlockwise 1.000 0.955 0.855 0.473 1.000 0.471
Hold mobile 1.000 - 1.000 - 1.000 -
Raise hand 1.000 - 1.000 - 1.000 -
Null 1.000 - 0.000 - 0.522 -

Walk

Chop 1.000 1.000 0.000 0.000 0.994 1.000
Throw 1.000 1.000 0.000 0.000 0.946 1.000
Punch 0.929 0.833 0.000 0.000 0.983 1.000
Clockwise 0.944 0.944 0.000 0.000 0.993 0.995
Anticlockwise 1.000 0.944 0.000 0.000 0.990 0.990
Hold mobile 0.705 - 0.975 - 1.000 -
Raise hand 0.442 - 0.956 - 0.999 -
Null 0.988 - 0.956 - 0.537 -

Run

Chop 0.917 0.826 0.000 0.000 0.986 1.000
Throw 1.000 0.975 0.000 0.000 0.894 0.997
Punch 0.429 0.429 0.000 0.000 0.966 1.000
Clockwise 0.500 0.500 0.000 0.000 0.978 0.916
Anticlockwise 0.000 0.000 0.000 0.000 0.975 0.942
Hold mobile 0.000 - 0.000 - 0.886 -
Raise hand 0.000 - 0.000 - 0.734 -
Null 0.981 - 0.875 - 0.309 -

Bike

Chop 0.900 1.000 0.000 0.000 0.729 0.956
Throw 0.913 0.917 0.500 0.500 0.872 0.843
Punch 1.000 0.742 0.000 0.000 0.930 0.711
Clockwise 0.622 1.000 0.000 0.000 0.780 0.908
Anticlockwise 0.500 0.450 0.000 0.000 0.937 0.686
Hold mobile 1.000 - 1.000 - 1.000 -
Raise hand 0.999 - 1.000 - 1.000 -
Null 0.991 - 0.997 - 0.878 -

Average 0.843 0.857 0.510 0.279 0.908 0.908

The drawback of our proposal can be seen from the
results of hold mobile and raise hand while running. These
low recall and precision were caused by the fact that
vibration of running is stronger than we assume, therefore
the hand is not classified into posture. Though our
method set the threshold according to the intensity of leg
as stated in the previous section, it is set based on walking
from our pilot study. Employing flexible threshold is our
future work. From our extra experiment, however, holding
mobile phone and raising hand are correctly recognized if
the hand is classified into posture.

Processing time
This section discusses the processing time of the proposed
method. Table 5 shows the processing time for the
displacement detection, constancy decision, and
recognition with SVM or DTW. Computer used for the
evaluation is SONY VAIO VGN-US90PS (Inter CoreSolo
Processor 1.2 [GHz]). Simulation program is implemented
with Visual C++. The evaluation result is time per one
processing calculated based on the processing time for
100,000 trials. The reason the processing time for SVM
and DTW differs in the proposal and comparisons is that
the number of activities learned is different. Most of the
recognition with SVM is occupied with feature extraction,
therefore the effect of the number of activities to be
recognized is small. The recognition with SVM for the
proposal is smaller than that for the comparison method
because the proposal extracts only mean as feature value,
while the comparison method extracts mean and variance.
The number of template for DTW is one per one activity,
and the recognition with DTW takes processing time in
response to the number of templates. For the results, the
processing time for the displacement detection and
constancy decision is shorter than that for recognition and
processing interval, therefore the proposed method can be
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applied to real-time applications.

Table 5: Processing time for comparison methods and
proposed method [msec].

SVM DTW
Proposal

Posture Behavior Gesture
Displacement detection - - 0.00141
Constancy decision - - - 0.0452

Recognition with SVM 0.0531 - 0.00203 0.0514 -
Recognition with DTW - 137 - - 34.9

Total 0.0531 137 0.00344 0.0980 34.9

Recognition of complex activities
Local activities are confined to right-handed ones in this
work. This section discusses recognition of gestures that
consist of multiple local activities over the body. Even
when multiple parts of body perform local activities,
procedure of the proposed method does not change.
However, all gestures and postures for each part have to
be collected since gesture data for right hand cannot be
used for learning the same gesture for left hand.

Combination of local activities and global activities would
be the following six patterns: 1) Local activities are all
postures, and global activity is also posture. Ex) Standing
with holding cell phone with the right hand and raising
the left hand to hold on to a strap. 2) Local activities are
all postures, and global activity is behavior. Ex) Walking
with holding cell phone with the right hand and raising
the left hand to cross at the crosswalk. 3) Local activities
are all gestures and global activity is posture. Ex)
Standing with punch with the right hand and chop with
the left hand. 4) Local activities are all gestures and
global activity is behavior. Ex) Walking with punch with
the right hand and chop with the left hand. 5) Local
activities are posture and gesture, and global activity is
posture. Ex) Standing with punch with the right hand and
raising the left hand. 6) Local activities are posture and

gesture, and global activity is behavior. Ex) Walking with
punch with the right hand and raising the left hand.

In the cases of 1) and 2), local activities are all postures,
which means no part of the body is performing gesture.
The parts of the body making a posture are classified into
posture and are recognized with SVM that has learned
postures only. The activity of the right hand is recognized
as standing with holding a mobile phone, left hand is
recognized as standing with raising the hand. The
remaining parts are recognized as standing or walking,
therefore such combined activities can correctly be
recognized. In the cases of 3) through 6), gesture is
included as a local activity. Vibration of the gesture is
propagated to the opposite hand that is not performing
gesture. In this paper, since the part of body that
performs gesture has been limited to the right hand, the
body parts other than the right hand are not classified to
gesture. For example of walking with rotating the right
arm activity, vibration of the right hand is propagated to
the left hand and the left hand is classified into gesture.
In case that local activities are all gestures like in 3) and
4), it is not problem that the left hand is classified to
gesture. Though the recognition may be incorrect due to
the propagated vibration, the system has a room to
recognize it correctly. However, in the cases of 5) and 6),
recognition results of the hand making a posture when the
leg performing gait are forced to be any of gestures. To
contend with the problem, recognition result whose
confidence is low is not output by setting threshold to the
DTW calculation. However, depending on the setting of
the threshold, correct recognition results may be
discarded.
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Conclusion
We constructed an activity recognition mechanism for
combined activities that classifies each part of body into
posture, behavior, and gesture, then recognizes individual
activities and integrates them. Evaluation results
confirmed that our proposed method achieved 0.84 of
recall and 0.85 of precision, which is comparable to the
method that had learned all the combined activities: 0.90
of recall and 0.90 of precision. As a future work, we plan
to separate and integrate activities in more primitive level,
that is to say to delete gesture component from raw data
of combined activity and to extract pure global activity.
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