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Abstract

Bootstrapping activity recognition systems in
ubiquitous and mobile computing scenarios often
comes with the challenge of obtaining reliable ground
truth annotations. A promising approach to overcome
these difficulties involves obtaining online activity
annotations directly from users. However, such direct
engagement has its limitations as users typically show
only limited tolerance for unwanted interruptions such
as prompts for annotations. In this paper we explore
the effectiveness of approaches to online, user-based
annotation of activity data. Our central assumption is
the existence of a fixed, limited budget of annotations a
user is willing to provide. We evaluate different
strategies on how to spend such a budget most
effectively. Using the Opportunity benchmark we
simulate online annotation scenarios for a variety of
budget configurations and we show that effective online
annotation can still be achieved using reduced
annotation effort.

Author Keywords
budget-based annotation, activity recognition, online
learning
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Figure 1: Influence of
annotation strategies on online
activity recognition systems
(schematic): Accelerated (red)
vs. slower learning (blue).

Introduction

As an enabling technology, automatic inference of the
activities humans are engaged in plays a central role in
the majority of ubiquitous and mobile computing
applications. Targeting real-world scenarios, Human
Activity Recognition (HAR) techniques are often
developed in “field deployments”, i.e., keeping
prospective users in the loop from early stages of the
development process. For example, model
personalization is of importance for healthcare settings,
which requires individual input to generate
personalized feedback during physical exertion [5], or
to target individual medical conditions [4, 14]. User
involvement becomes a technical necessity, where
models need to be adapted or even bootstrapped ‘from
scratch’, without having access to prior knowledge.

In contrast to lab-based developments, in such
contexts it is often difficult to obtain ground truth
annotations required for deriving automatic
recognizers. Reasons for this can be of a very practical
nature as it is often simply impossible to follow a user of
mobile HAR technology for the sake of labelling sample
data. More importantly, ethical restrictions often
prevent direct observations aimed at obtaining ground
truth annotations such as in private (smart) homes.
Alternative annotation strategies engage users directly,
e.g., through self-reporting of activities [9], or through
experience sampling, i.e., prompting users to provide
labels for current or previous activities [2]. Such user
involvement is disruptive as it interferes with ongoing
activities with what appears to be mundane support for
a technical system — a task that is typically not the
primary focus of the user. Arguably, the tolerance for
such active user participation is thus limited.
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In this paper we focus on optimising prompting in
online annotation scenarios. Especially for
bootstrapping HAR systems this is a non-trivial
endeavour since existing approaches, such as active
learning [8] or semi-supervised learning [20], are not
applicable as they require prior knowledge about
activities to be recognised, i.e., existing annotated data
for estimating the underlying distributions.

Our central hypothesis is the existence of a fixed
budget of user provided annotations that a HAR
system may spend during its bootstrapping phase.
Spending one unit of the budget corresponds to asking
the user for the label of an activity. Focusing on online
annotation we assume a “worst memory” scenario
where users can only provide information regarding
their most recent activity. A request for annotation can
be made at any given time as long as there is budget
available. We also assume users labels are always
reliable and correct. With these assumptions we
explore the effectiveness of possible budget allocation
strategies. We explore how annotation strategies
impact model performance. Fig. 1 illustrates the ideal
trade-off, where how a greedy strategy (red) translates
in more accelerated model performance than a uniform
strategy (blue). While accelerated learning (red) results
in a reliable model earlier on, this may come at a cost
in terms of aggravated user tolerance which may
impact further interaction with the device. The lazier
strategy (blue) learns more slowly but might be
preferred by the user in the long run.

The main contribution of this paper is an experimental
exploration of various configurations and trade offs
between budget levels and spending strategies on one
side, and accuracy of the HAR models that can be
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learned in such settings, on the other. Our findings
serve as guidelines for designers of interactive online
annotation interfaces to support them in user-centred
studies. Specifically, we develop and evaluate
budget-based strategies for online annotation of HAR
by means of an extensive case study where we
simulate online annotation scenarios. We use the
Opportunity challenge dataset [7], which comprises of
non-periodic activities recorded using multiple worn
sensors. We use this realistic simulation to study
different problem configurations in detail and in an
objective and reproducible way.

Our findings suggest that effective online annotation of
human activities can be best achieved using a
deterministic greedy budget spending strategy or a
probabilistic strategy employing an exponential
distribution function. Furthermore, the proposed
approach allows us to suggest realistic budget sizes for
online annotation tasks. Given that Opportunity is
regarded as a realistic and at the same time
challenging HAR dataset, these findings are very
encouraging for related real-world deployments of
budget-based online annotation, including one of ours
which is currently in development.

Background

Although supervised learning is the predominant
approach for HAR applications, obtaining sufficiently
reliable ground truth annotations for training data is
challenging, largely due to practical as well as ethical
reasons, especially in mobile and domestic ubiquitous
computing settings. One approach to overcome these
difficulties involves periodically engaging users in the
data collection process, by prompting them to label
their activities as they occur [10]. Though the general
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approach is straightforward, one needs to balance the
need to acquire new annotations, with limited users’
tolerance to interruption of what they perceive as
unmonitored activities.

User Perspective

Tolerance to interruption while performing an activity is
naturally idiosyncratic, as personal patience and
inclination to collaborate come into play. Clearly
explaining to the users the purpose of the interruptions
and the benefits that can be expected is one way to try
and increase their tolerance. Key acceptance factors
include the nature of the task, and user awareness that
a device is gathering information about the task itself.
In this context, the notion of intelligibility has been
adopted by the ubiquitous computing community to
measure and improve upon the capabilities of
interactive systems [11].

Technical Perspective

Whilst our research is informed by the user perspective
as described above, our main concern is with the
technical challenges associated with online user
annotation. A number of strategies have been
developed for engaging users in the process of activity
labelling. For example, the Experience Sampling
Method (ESM), also known as Ecological Momentary
Assessment (EMA) [18], is a technique to prompt users
to repetitively reflect upon a relevant current state of
fact while, at the same time, functioning normally in
their environment. In activity recognition, ESM/EMA
has been used to monitor users in naturalistic
environments, and to interrupt them in order to
annotate some of their activities [10]. Gathering
annotations directly from the user eliminates the need
for external supervision.
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Figure 2: Interactive Pipeline

The issue of how reliably users can be expected to
answer questions about past events, limits the
applicability of Active Learning [19] (AL) for the
purpose of acquiring annotations and model learning.
AL is based on the idea that a “pool” of un-annotated
data points is available to the learner at each step of
the learning process. An information gain function is
used to select the most informative points in the pool,
and requests are issued to the user in order to obtain
the corresponding label. This produces an updated
pool, which is again evaluated to obtain a new label,
iteratively [1]. Unfortunately, the user's memory cannot
be trusted for reliable annotation if the target activity
took place in the distant past or too many other
activities took place after the target activity. This
effectively rules out Active Learning techniques for
online annotation of activities.

In summary, we argue that current user involvement
techniques are ill-suited for online annotation
scenarios. In response to this, our work aims at
effective ways of bootstrapping HAR systems with
users providing ground truth annotation in an economic
and acceptable way, leading to the rapid training of
functional and extensible recognisers.

A Budget-based Online Annotation Frame-
work

Overview

The focus of our work is on exploring strategies for
online annotation of human activities, with emphasis on
mobile and ubiquitous scenarios. In such scenarios: i)
Ground truth annotations are provided by the
prospective user of a mobile HAR technology; and ii) a
budget is available for annotation. Our hypothesis is the
existence of a fixed budget which models limited levels
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of tolerance. The objective of this paper is to explore
suitable budget sizes and budget spending strategies.

Experimental evaluations in mobile and ubiquitous
computing applications is a challenge in itself as
interactive scenarios are difficult to replicate, which
poses a challenge to objective judgements and is not
appropriate for in-depth exploration. In response to
this, we systematically assess the effects of different
budget spending strategies, by realistically simulating
interactions aimed at selectively acquiring user
annotations. This gives us complete control over the
selection of the subsets of annotations to use, and
provides a level of repeatability which would be very
difficult to achieve using a field experiment (in addition
to being more practical and economical overall).

Interactive Pipeline

We address a HAR scenario where the system
bootstraps a recognizer that is custom-made for each
user, by occasionally collecting input from users while
they go about their daily living. The system
continuously records sensor readings and, according
to a schedule, prompts the user to annotate recently
identified activities. Because user compliance to
interruptions is a limited resource, not everything is
annotated, but, rather, a convenient budget and
schedule of interruptions is specified in advance.

In order to streamline the interactive bootstrapping
process, we propose a data processing pipeline that
combines HAR learning procedures from the literature,
with the capability to collect user-provided annotations.
The interactive pipeline, illustrated in Fig. 2, is generic
and can be adapted to the specifics of the HAR
application under consideration.
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Preprocessing. This step centralizes automatic
sensor readings and provides the core machine
learning preprocessing functions, such as the definition
of a sliding window over which vectors of feature sets
are extracted [6].

Segmentation. The preprocessing step produces a
sequence of frames. When a frame captures the full
characteristics of an entire periodic activity like, for
example, walking or running, frames can be used as
individual training examples. Non-periodic activities
such as those considered here, however, are only fully
expressed across multiple frames, suggesting that
training examples should consist of sequences of
contiguous frames, called segments and denoted S;. It
is these segments that the user is asked to annotate
and that are used to bootstrap the activity recognizer.

Budget. The decision of when annotation requests
should be made to the user is controlled by a budget
configuration consisting of a budget size, which defines
the total number of annotation requests available to the
system, and budget spending strategy, which
determines the distribution of such requests over time.

Interaction with User. This component is triggered by
the Budget component and is responsible for obtaining
annotations from users in the form of labels L;.
Annotation requests always refer to the most recently
identified segment. As mentioned, for the purpose of
this paper, user interaction is simulated using ground
truth annotations available with the Opportunity
dataset.

Model Update. When the training set is extended with
a new training example (a segment with an associated
label), the system re-trains the model on the newly
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enlarged training set.

Classification. Since the activity classifier is
bootstrapped using incrementally collected activity
labels, classification accuracy is expected to increase
with the growing size of the training set, as more labels
are obtained. Thus, in addition to the final accuracy
(corresponding to the point where the entire budget
has been spent), in our results we also report the
learning rates. These are the intermediary
classification accuracy scores measured at every stage
of the bootstrapping process, namely every time a new
training example is supplied and the model is updated.

Annotation. This component acts as a bridge between
the machine learning and the interactivity parts of the
pipeline. The annotation stage constructs training
examples by fusing segments with user-provided
activity labels.

Methodology

We use the previously described HAR framework in a
realistic case study where we investigate the
effectiveness of budget based online annotation in
general and in particular focus on the influence of
different budget sizes and spending strategies.

Segmentation and Budgeting

Segmentation In our experiments we study the
effects of budget configurations on recognition
performance. We therefore ignore possible
segmentation errors, by assuming, as part of our
simulation, a perfect segmentation procedure which
identifies the correct boundaries between segments,
exactly when there is a change in activity. In our
simulations we use the segment boundaries from the
ground truth annotations in the dataset. While



automatic segmentation is a complex problem in itself,
it is nonetheless possible to obtain high recognition
accuracy scores [12] so our assumption of ideal
segmentation comes close to what is achievable.

Budget Sizes Clearly, the larger the annotation
budget, the more segments are available to train a
recognizer, which shall result in better recognition
performance. Although, realistically, the budget size
may be limited by human, context and application
considerations, we are interested in studying the
relationship between recognition performance and
budget. Thus, we experiment with three budget sizes:
small (10 annotations), medium (40) and large (100).
The choice of budget sizes not only provides insight
into expected recognition performance, but also
exemplifies how additional annotation effort translates
into increased performance.

For comparison, as a reference we use the theoretical
best-case scenario where the entire sequence of
segments is annotated. This baseline provides us with
an upper bound in model accuracy.

Budget Spending Strategy The next design choice
is how to spend the budget. When a segment is
generated, the system makes an online decision
whether to interrupt the user to annotate or to discard
it. We model the distribution of interruptions over time,
using the following four different strategies.

Uniform Random The interruptions are scheduled at
random within a horizon of time, according to a
uniform probability density function.
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Uniform Constant The interruptions are scheduled to
occur after fixed time intervals.

Upfront The budget is spent as quickly as possible.
For every detected segment, an annotation
request is prompted until the budget runs out.

Exponential The density of interruptions is an
exponentially decaying function. Interruption
times are sampled from an exponential
probability density function, so more interruptions
are likely to happen at the beginning and very few
toward the end of the horizon of time.

Strategies can be chosen such that the budget is
expended as soon as possible (Upfront), more quickly
at the beginning (Exponential) or more evenly across
time (Uniform Random or Uniform Constant).
Distributing interruptions in time in a certain way is
certainly motivated by numerous factors which lie
outside our experimental environment. In this paper we
are interested in the impact of budget strategies on
recognition performance.

In a simulation with a finite dataset, distributing the
budget within a fixed horizon of time has the advantage
of guaranteeing the spending of the entire budget. In a
real-world deployment, similar spending patterns can
be alternatively obtained by employing an interruption
probability p that would vary with the number of
previous interruptions according to the employed
strategy.

Evaluation Methodology

We use the popular Opportunity dataset [7] to simulate
online bootstrapping of a HAR recognizer using
user-provided annotations. We segment the training
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set into a sequence of segments which serves as input
to our incremental learning simulations. User
interaction by requests to annotate is simulated by
annotating segments using the dataset’s ground truth
labels (which are provided offline together with the set
of sensor readings). We control the annotation patterns
by specifying the budget size and strategy.

We measure model accuracy using a separate test set,
also segmented, so that testing is done at segment
level. We then calculate the model’s F-Score with
regard to the the segments in the independent test set:

where P; and R; are the precision and recall,
respectively, of the classifier on activity a;. The
weighting factor w; is defined as the relative
numerosity of a;, w; = N;/>_ N;, where N, is the
number of segments belonging to a; in the test set.

Segment shuffling. We report the learning curves of
the classifier during all stages of the bootstrapping. As
learning curves from a single budget expenditure are
very jagged, in order to reduce fortuitous performance
spikes or drops, we perform 50 repeated
randomizations of the activity segments data and then
report the average F-scores over all randomizations.

Dataset

Opportunity [7] is a publicly available benchmark
dataset widely used in current HAR research.
Collected in order to advance the state-of-the-art in
terms of HAR, Opportunity contains contiguous
sequences of readings from a set of 23 worn sensors
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by the participants while they perform a predefined set
of common gestures or activities of daily living (ADLs).

We use Opportunity to pursue an extensive set of
experiments on how to bootstrap recognition systems
using online processing techniques. By using
Opportunity and by describing our experimental setup,
we have ensured that we ground our conclusions in a
non-trivial classification task and that our research is
reproducible.

Opportunity contains data collected independently for
four subjects. Each subject has six data files: ADL1,
ADL2, ADL3, ADL4, ADL5 and Drill. In our use of the
dataset, we follow the gesture recognition task in the
challenge definition (Task B2) set out in [7]. As
specified, we use the gesture sequences in the subsets
ADL1, ADL2, ADL3, and Dril1l as the training set from
which we draw activity segments, and the sequences in
subsets ADL4 and ADL5 as the fixed test set, by which
we evaluate the classifier's accuracy at each step of the
learning curve. We use a subset of the 23 body-worn
sensors available in the files, namely we used signals
from 5 tri-axial accelerometers (upper right arm, lower
right arm, upper left arm, lower left arm and back).

Each atomic activity, or gesture segment, consists of a
sequence of adjacent frames annotated with the same
activity label, for instance “Open Fridge”. In a realistic
application scenario we would prompt the human to
annotate their activities on this segment-level, i.e., the
system would ask for one label per activity instance
and then assign the same label to all frames this very
segment subsumes.

We follow the suggestion of Rebetez et al. [16] who
reduced the Opportunity gestures to 7 by aggregating
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similar ones, namely Open/Close_Fridge,
Open/Close_Drawer, Open/Close_Door, Clean_Table,
Open/Close_Dishwasher, Switch_Light and Drink.

Opportunity contains the null class activity label which
designates any activity outside the predefined
vocabulary of interest — resulting from the
aforementioned 17 gestures. We ignore segments
labelled as null because the interpretation of these
would not generalise well to a realistic deployment.

Classification Backend

Given that the focus of our work is on exploring
effective annotation strategies, we employ a standard
analysis approach for human activity recognition, which
shall be deemed to provide reasonable classification
accuracy results [6].

Input data. In this study we focus on tri-axial
accelerometer data. Note that this is not a limitation of
the presented approach but rather a practical
consideration, consistent with the popularity of
accelerometry in contemporary HAR applications.

Feature extraction. We employ a standard sliding
window procedure (e.g., [15]) that translates the
continuous stream of sensor data into a sequence of
small analysis frames capturing 500ms of consecutive
sensor readings, and overlapping by 50%. For every
frame we then calculate the mean of each signal axis —
in contrast to more recent feature learning approaches
(e.g., [3,13]) a simple yet reasonable local feature
representation (and in line with the Opportunity
baseline [17]).

Classification. These feature vectors are then fed into a
classification backend, for which we utilise a standard
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C4.5 decision tree. In doing so we adopt the approach
developed by one of the participating, very successful
teams in the original Opportunity challenge [7].

Results

Owning to space limitations, we only report the results
for Subject 1. These results, however, are
representative for the whole Opportunity dataset.

Subject 1 has 383 training set segments. We refrained
from analysing null-class segments (as previously
explained), as well as from processing segments
shorter than the length of a sliding window, and those
segments containing missing sensor readings.
Evaluation was done against Subject 1’s fixed testing
set which contains 115 segments.

Small | Medium | Large | Baseline
UR | 0.39 0.62 0.64
uc | 0.39 0.59 0.65 078
Upfr | 0.39 0.58 0.65 '
Exp | 0.39 0.60 0.65

Table 1: Final recognition accuracies (F-scores; Opportunity
challenge test set) for different budget configurations.

The experimental results show that it is possible to
bootstrap human activity recognizers by involving the
user in an online annotation process. Table 1 shows
the asymptotic performance that can be expected
using our proposed budget configurations. More
annotated segments result in better recognition ability.

It is also clear that the budget strategy does not affect
the end performance, but it has an effect on the
learning rate of the activity model. Figure 3 shows that
the strategy impacts the speed with which the
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recognizer is bootstrapped. We have plotted the
performance of all strategies for the Medium budget
size (40 units) and also for the baseline. The x-axis is
the number of processed or seen activity segments. As
explained before, if the budget size is strictly less than
the total number of segments, not all processed
segments are annotated. Figure 3 shows that
strategies that request annotations early on, such as
Upfront or Exponential cause a steeper learning rate
- they reach the end performance level sooner. In
contrast, lazier strategies such as Uniform Random or
Uniform Constant delay the production of a reliable
activity model but do not amass interruptions early on.

We have isolated the learning curve of the baseline
illustrated in Figure 3 and displayed it in Figure 4. This
shows an exhaustive analysis of budget sizes, where
the x-axis represents the budget size and the y-axis is
the expected end recognition accuracy. The budget
strategy, as we have seen, determines how fast the
end performance is going to be reached. This can be
used to inform budget sizes of real user deployments.

Summary and discussion

Learning accurate Human Activity Recognition models
requires training examples which are often difficult to
acquire in practice. Our work is set in the context of
online learning, where further challenges arise. Firstly,
labelled examples only become available incrementally,
as the activities unfold. Secondly, labels must be
acquired through proactive interaction with the user,
who may have limited tolerance for such interruptions,
as well as limited memory to recall past events. This
leads to the notion of a budget of available user
interactions, whereby the user is asked to identify the
type of activity associated with the most recent
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gesture. The combination of these factors leads to a
scenario where the learning process can only afford a
set number of interactions, which are aimed at labelling
the type of activity that is being observed.

Summary of contributions

In this paper we proposed a principled way of analysing
the trade-offs between the number of available
interactions (budget), the way the budget is spent over
time (budget spending strategy), and the accuracy of
the HAR models that can be learned under such
budget constraints. Our approach involves replaying
segments from the Opportunity challenge dataset and
simulating interactions that occur during sequences of
activities for an extensive set of budget configurations.

Our main contribution is an experimental method which
is generally applicable to the online learning setting.
Our results indicate that (i) recognition accuracy close
to the baseline can be achieved by using about 50% of
the labels that are potentially available; (ii) the choice
of budget spending strategy has little bearing on overall
accuracy at the end of training, however it affects the
learning rate, which certainly has massive implications
on the overall acceptability of user-involvement in
online learning of HAR systems.

Open questions concern the determination of realistic
budget sizes and spending strategies. We expect our

results to be instrumental to inform future user studies,
including our owns.
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